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Abstract-The problem of laminar combined forced and free-convection heat transfer from a vertical thin 
needle in a variable external stream is considered. The similarity solutions for needles with isothermal 
walls and needles with uniform wall heat fluxes have been obtained. For a given value of the needle size, 
the flow and heat transfer behaviours are similar to those encountered with flat plates. The Nusselt number 
and the shin-friction coeffkients increase with decreasing needle sixes for assigned values of F’randtl 

number, local Reynolds number, and local Grashof number. 

NOMENCLATURE 

needle sizes; 
transformation constants; 
local skin-friction coefficient; 
transformed streamfunction for iso- 
thermal wall needle; 
transformed streamfunction for 
uniform wall heat flux needle; 
acceleration due to gravity; 
local Grashof number for iso- 
thermal needle 

u, W), 

u 
co’ 

v, 
X, 

Z, 

Greek 
local Grashof number for uniform a, 
wall-flux needle B, 

4,8qwx4: 6. 

av’ ’ r, 
transformed non-dimensional tern- 4, 
perature function for uniform wall- 
flux needle; ?. 
local Nusselt number; 
local pressure in the fluid; VA 
Prandtl number v/tc; 
heat flux at the wall; 1, 

1505 

radial coordinate; 
local Reynolds number U(x) x/v; 
local and free-stream fluid tem- 
peratures respectively; 
local axial and free-stream variable 
axial velocities respectively; 
a constant ; 
radial component of velocity; 
axial coordinate; 
transformed independent similarity 
variable for uniform wall-flux 
needle. 

thermal conductivity; 
coefftcient of thermal expansion; 
transformed temperature function 
for isothermal needle; 
a parameter Grxp/Rez’2 ; 
axisymmetric streamfunction for 
uniform wall-flux needle; 
transformed independent similarity 
variable for isothermal needle; 
axisymmetric streamfunction for 
isothermal needle; 
a parameter GrJRez; 
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V. kinematic viscosity; flow over these thin needles provided the size of 
K, thermal diffusivity; the needle does not exceed the thickness of the 

P? ambient fluid temperature. boundary layer over it. Clearly this approxima- 
tion fails near the front stagnation point of the 

Superscript needles and it would be valid only away from the 
I ordinary differentiation with respect stagnation point. The flow over such needles 

to transformed independent has considerable importance as these “needles” 
variable. could be identified with very small diameter 

cylinders such as “wires” and the “sensors” of 
Subscripts hot-wire anemometers. 

1, transformed variables with very 
large values of either 1 or r: 

W’, wall conditions; ANALYSIS 

x, local values at a given x. It has been shown 15-91 that the effect of 
transverse curvature cannot be neglected in such 
flows. Due to variable axial free-stream, an 

INTRODUCTION axial pressure gradient is also imposed inside 
THE HEAT transfer from a vertical flat plate in a the boundary layer. Retaining these effects, the 
variable stream and under the action of gravity equations governing the steady laminar flow in 

Boussinesq approximation are, 

ug + “g = - lap + s,p(t _ t,) 

P ax 

has been studied numerically by Sparrow et al. 
[l] and by Brindley [2] using Meskyn’s 
analytical methods. The problem of forced heat 
transfer from a thin horizontal needle in a 
uniform stream has been investigated by Mark 
[3], Tam [4] and by us [S]. Free-convection heat 
transfer from an isothermal vertical needle and 
from a uniform wall flux vertical needle under 
the influence of gravity has been analyzed by 
Cebeci and Na [6] and by us [7] respectively. 
These problems are closely related to similar 
heat transfer problems from thin vertical 
cylinders. Sparrow and Gregg [8], Nagendra 
et al. [9], and Fujii and Uehara [lo] have con- 
sidered the heat transfer from vertical cylinders 
under different boundary conditions. Presently 
we have studied the heat transfer from vertical 
thin needles when a variable stream is imposed 
on the gravity-induced convection under two 

f3(ru) i3(ro) 
-far==0 ax 

and, 

1 aP d W) 
P ax - w+- 

(1) 

(2) 

(3) 

(4) 

(i) Isothermal wall needles - _. _ _ _ . . ^ 
distinct boundary conditions, i.e. (i) the needles lntroducmg the detmitlon ot axisymmetric 

with isothermal walls, and, (ii) needles with streamfunction +, we transform the equations 

uniform wall heat fluxes. Similarity solutions (l)--(4) with the help of the following trans- 

have been obtained under different restrictions formations, 
on the shapes of the needles and on the axial 
variation of free-stream velocity in the two 

* = V!(n)? r - tm = (r, - t,)W, 

different cases considered. The assumed bound- 
ary layer approximation is valid [5-91 for the 

U(x) = u,x+, (5) 
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The surfaces of constant q = a correspond to the 
surfaces of revolution and henceforth would be 
mentioned as the walls of the needles. Equation 
(5) transforms equations (l)-(4) to, 

8$“’ + 8f” + 4ff” - 2f r2 + A0 f $ = 0 (6) 

@‘+(l+iPrf)8’=0. (7) 

The parameter A is a measure of relative im- 
portance of free-convection over forced-con- 
vection. It is given by, 

(8) 

The proper boundary conditions could be 
obtained as, 

f(4 = f’(4 = 0, e(a) = 1 

f'(a) = $9 and B(oo) = 0. 
(9) 

When Iz is large, the free-convection becomes 
dominant over the forced-convection. In such 
a case, we use a transfo~ation following [2], 

The corresponding transformed similarity equa- 
tions are, For 

Let 4, be the uniform heat flux through the 
walls of the heated needle and 4 be the axi- 
symmetric streamfunction in the present case. 
We use the following similarity transformations, 

#J = xw(4, t-tm=4W J( > y x%(z) 
a m 

a (14) 
u IA 

z=22-_ 

v x3’ 
and, V(x) = u,x*. 

The simila~ty equations are, 

8zg”’ + 8g” + 4gg” - yg’2 + rh + * = 0 (15) 

z&’ + h’(1 + $Prg) - &Pl.hs’ = 0. (16) 

The parameter r measures the relative strength 
of free-convection over the forced convective 
flow and is given by, 

(17) 

The boundary conditions at the wall z = b of 
the needle and far away from the needle wall 
(2 --, co) are, 

g(b) = g’(b) = 0, 
1 

h’(b) = - - 
2,/(b) (18) 

g’(co) = 4, h(co) = 0. 

free-convection dominated flows at large 
values of r, following [2], we used the trans- 
formations, 

(11) cp1 = xvg,(s,), 

(12) t - t, = $ + x%z,(z,) 
J( > 

(19) 
Ott 

The boundary conditions in these transforma- 
tions are, 

z,=&, e= %s,B 
[a v2 j/(ij]‘* 

f&J = flYa,) = 0, 8&l,) = 1.0 The similarity equations are now given by, 

1 
f;(c@ = 2J(A)’ and, Q,(a) = 0 

(13) 8z,g’I’ + 89’1 + 4g,g:’ + h, 

-~g;z+$zo (20) 
When A--, co, equations (11) and (12) are similar 
to those obtained by Cebeci and Na [6]. r& -I- (1 + $Prg,)h; - &M,g; = 0. (21) 
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The corresponding boundary conditions at the 
wall z1 = b, and at a distance far away from the 
needle are. 

g,(b,) = g’,(b,) = 0, h’,(b,) = - 1 
2 J&l 

1 (221 
g;(oo) = -A_-- 

&IV)’ 
and, h,(a) = 0. 

When r -+ co, equations (20) and (21) and 
boundary conditions (22) are the same as those 
obtained by us previously [7]. Incidentally these 
equations are the same as those obtained by 
Nagendra et al. [9] for r + co. The different 
form of equations @a)+) in [9] is due to the 
use of slightly different transformation variables. 

(iii) Heat transfer and skin-friction parameters 
For isothermal wall needles, we define the 

local Nusselt number NuX and the skin-friction 
coefficient by Cf, by, 

Nu = xWWv =a _ 

x (t, - t,) 
- -2,/(a) 6’(a) Ret (23) 

and, 

Cf, = 
#ov(au/r?r)~_ 

$P w2 
--II = 8&z) f “(a) Re;*. (24) 

For uniform wall heat flux needles, the corre- 
sponding parameters are defined as, 

Nux = qw = Fe: 
dt, - f,) h(b) 

(25) 

and, 

Cf, = 8,/(b) g”(b) Rex? (26) 

The various similarity equations (6) and (7), 
(11) and (12), (15) and (16) and (20) and (21) were 
solved numerically using initial value “shooting” 
methods. 

DISCUSSION OF RESULTS 

(i) Isothermal wall needles 
The non-dimensional axial velocity profiles, 

f’ = u/2U(x) are shown in Fig. 1 for Prandtl 

1.60 

1.20 

‘G 
0.80 

0.40 

0 4 8 12 16 20 

17 

FIG. 1. Non-dimensional axial velocity, f’(q), and tempera- 
ture, 0(q) profiles for various values of 1. Pr = 0733. 

a = 10-l. 

number, Pr = O-733, needle size, a = lo- ‘, and 
for various values of A. For A = 0, the gravity 
induced free-convection is absent and the flow 
is forced convection over the needle in a variable 
axial free-stream. This situation is different 
from the previously considered forced-convec- 
tion over the needles in uniform stream [3-51. 
The induced convection increases with increasing 
values of A as could be noted by the rapid in- 
crease in the amount of maximum velocity. For 
A >/ 20, the free-convection becomes dominant 
over the forced convection. In such a case 
transformed similarity equations in terms of 
fl, ylI, 19~, etc. were solved numerically to obtain 
non-dimensional axial velocity profiles. Hence a 
crude limit for free-convection dominated flow 
regime is where, 

Grx 2 20(Re,)2. (27) 

The lower part of Fig. 1 shows the corresponding 



variation of non-dimensional temperature func- 
tion 0(q). With increasing values of A, the rate 
of heat transfer from the needle increases, and 
hen= the thermal boundary layer thickness 
decreases rapidly. For a given value of A and the 
needle size, the broken curves in Fig. 2 show that 

0.60 /----------- 
----____ 

0 4 8 12 16 16 

‘-Or 3 

0.60 

e 

0.40 

0.20 

0 4 6 12 16 I8 

FIG. 2. Non-dimensional axial velocity, f’(q), and tem- 
perature, 0(q) profiles (i) for various vaiues of Pr, a = lo- l, 
Z = la (broken curves}, and (ii) for various needle sizes 

Pr = @733,1 = 10 (solid curves). 

the convective effects are suppressed whereas 
heat transfer rates increase rapidly with increas- 
ing value of Prandtl number. This is due to the 
increase in viscous diffusion over thermal 
diffusion with increasing values of Prandtl 
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number. Caused by the boundary layer approxi- 
mations, the above transfer behaviors are 
similar to that in the case of flat plates [l, 23. 
Hence we conclude that for a preassigned value 
of the needle size, the flow and transfer behaviors 
are quite similar to those encountered with flat 
plates [3, S-71. 

The important features arising from the 
variation in the sizes of the needles are computed 
next. For a given value ofl = I*Oand I-9 = 0.733, 
we have shown f’(q) and 13(q) variations in Fig. 2 
(solid curves) for two needle sizes. With pro- 
gressively decreasing needle sizes, the convective 
increase in motion is rather slow, and hence the 
boundary layer thickness decreases very slowly 
in such a case. This slow rise in convection rates 
results in a slow increase in heat transfer rates. 
Hence the thermal layer seems to decrease very 
slowly in the present case. 

Table I. Vdues of F, and F, for Pr = 0.733 
- 

Needle sizes a = 10-l a = 10T2 
a. F, F, F, F, 

1.0 1.0 1.0 0.50 0.687 
10-O 1.18 1.02 0.695 0,710 
20-O 1.08 0.970 a628 0,675 
50.0 0.905 0.905 0533 0,615 

100.0 0.754 0.862 0450 0.578 
-- _- 

The Nusselt number and skin-friction co- 
efficients could be expressed as, 

and, 

= 1 + 0.30X=95(u, Pr, 2) (28) 

C?- x = 1 + 0.335120.874 
ccfx),z;, 

x qa, Pr, A). (29) 

We have tabulated functions F,(a, Pr, A) and 
log,,(l/u) F&z, Pr, I.) for Pr = 0.733, needle 
sizes, a = lo-‘, lo-’ and for various values of 
A in Table 1. The Nusselt number was found 
to increase (i) with increasing values of A for a 
given value of Prandtl number and needle size, 
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(ii) with increasing values of Prandtl number for 
given values of 1 and needle size, and, (iii) with 
decreasing needle sizes at given values of ,I and 
Pr. The skin-friction coefficient at a given value 
of local Reynolds number increases (i) with 
increasing value of 1 at a given needle size and 
Pr, (ii) with decreasing values of Prandtl number 
for given values of A and needle size, and (iii) with 
decreasing needle sizes at given values of 1 and 
Pr. 

(ii) Uniform wall heat flux needles 
The uniform wall heat flux needles have 

2.00 
r 

1.60 

1.20 

‘m 

0.80 

0.40 

0 2 4 6 8 IO 12 

0.60 IT_ 
z 

0.40 
L 

FIG. 3. Non-dimensional axial velocity, g’(q), and tem- 
perature, h(q) profiles for various values of r, Pr = @733, 

h = 10-l. 

similar flow and transfer characteristics as those 
of isothermal wall temperature needles. The 
only major difference is in the value of wall 
temperature which varies according to the 
strength of convection to keen the flux rate 

constant. Figure 3 shows the axial velocity 
function g’ = u/2U(x) and temperature function 
h(z) for given Pr = 0.733, needle size b = lo-‘, 
and for various values of F. The temperature at 
the wall decreases with increased convection 
rates such that the uniform wall heat-flux 
condition is always maintained. The broken 
curves in Fig. 4 show that the influence of the 
Prandtl number on convection and heat transfer 
is similar to that in the isothermal case. The 
solid curves in Fig. 4 show the influence of a 
variation of needle sizes at a fixed value of 
Pr = 0.733 and r = 1.0, on velocity function 

0.6Or _,A 
__------------______________ 

0.40 I -&$$l:----------- 
r 

IO ‘, 0.733 
‘lo-'. 5.0 

0 2 4 6 8 IO I2 

z 

\\/,b=l0-', Pr=O.O20 

'\ 
h '\ 

'. 
'\ 

. . 
. . . 

0 2 4 6 8 10 12 

FIG. 4. Non-dimensional axial velocity, g’(q), and tem- 
perature, h(q) profiles, (i) for various values of Pr. b = lo- ‘Q 
r = 1.0 (broken curves), and (ii) for various needle sizes, 

Pr = 0.733, r = 1.0 (solid curves). 

g’(z) and temperature function h(z). Except for 
the wall temperature changes, the basic nature 
of flow and heat transfer are similar to those in 
the case of isothermal needles. 
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The approximate relations for Nusselt number 
and skin-friction coefficient could be obtained 

as, 

N% 
WJ,,, 

= 1 + 0*02(r)0.6sQ7,(b, Pr, r) (30) 

and, 

CL 
(Cf,),,, 

= 1 + 0*17(zy74 

F,@, Pr, 0 (31) 

where F, and F4 are shown in Table 2. Equations 
(28) and (30) show that the Nusselt number 
ratio decreases in the case of uniform flux wall 

Table 2. Values of F, and F4 for Pr = 0.733 

Needle sizes b = 10-l b = lo-’ 
l- F3 F, F, F, 

1.0 1.0 1.0 0.17 0.353 
10.0 1,145 1.065 0.364 0.412 
20.0 1.10 1.005 0.390 0406 
50.0 0,940 0.892 0.382 0.391 

100.0 0795 0.825 0.348 0370 

needles. Similar observations on the Nusselt 
number ratio have been made by Fujii and 
Uehara [lo]. The Nusselt number and skin- 
friction coefficient have similar variation with 

various parameters involved as those described 
for isothermal wall needles. 
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CONVECTION MIXTE AUTOUR D’AIGUILLES FINES 

Rbum~On considkre le probleme du transfert thermique par convection laminaire mixte sur une fine 
aiguille verticale dans un courant exteme variable. On a trouv& lea solutions de similariti pour des aiguilles 
avec paroi isotherme et pour des aiguilles avec flux thermique parittal uniforme. Pour une taille d’aignille 
donn&e la comportements de l’&oulement et du transfert thermique sent semblables & ceux consid&& 
pour des plaques planes. Le nombre de Nusselt et les coefficients de frottement pa&al croissent inverse- 
ment aux tailles des aiguilles pour des valeurs don&es du nombre de Prandtl, du nombre local de Reynolds 

et du nombre local de Grashof. 

Zusammenfassung-Das Problem laminarer, kombinierter erzwungener und freier konvektiver Wlr- 
meiibertragung von einer diinnen Nadel bei verrinderlicher AnstrBmung wird behandelt. Die tinlichen 
LBsungen fiir Nadeln mit isothermen WLnden und Nadeln mit einheitlichen Wandwarmestriimen wurden 
erhalten. Fiir einen gegeben Wert der Nadelform sind Striimungs- und W&rmetibertragungsverhalten 
ahnlich denen, die man bei flachen Platten erh?dt. Die Nusselt-Zahl und der Oberfllchenreibungskoeffizient 
erhbhen sich mit abfallender Nadelform ftir bestimmte Werte von Prandtl-Zahl, lokaler Reynolds-&h1 

und lokaler Grashof-Zahl. 
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TEHJIOOBMEH HPLl BbIHY;YCJJEHHOm II CBOBOJJHOn KOHBEKIJHH & 
TOHKBX CTEPXHEB 

AHHOTaqW%-~‘aCCMaTpIleaeTCH 3axaW 0 COBMeCTHOM TenaOO6MeHe MemAy BeylTLlKL’lbHbIM 

TOHKIlM CTeIUKHeM II IIepeMeHHOfl BHelLIHeff CpeROfl IIpIl JWlHJIJIRpHO~ DbIHj’HF~f’JIHOti 11 

CB060flHOti KOHBeK~MII. nOnyWHb1 k+BTOMO~ejIbHbIe peIlIeHIlR AJIR CTepECHeil C 1130Te~MIl- 

YeCHIlMII PpaHIl~aMB II CTepltcHeti C O,!(HOpOfiHbIMIl TellJIOBbIMIl IIOTOKaMIl IIa CTeHKaX. &WI 

CTepwHJl AaJIHOrO pa3ME?pa pWJUlMb1 Te9eHLlFl 11 TeJIEOO6MeHa CXOAHbI C peHFIIxaMIx ,WIFl 

IlJIOCJGlX IIjIaCTIIH. npI1 3aRaHHbIX :JIIaYeHHFIS ‘IIiCJla nI’aH;[TnR, JIOKajIbHbIX YCICejI 

PetiHoJJb,~ca II I’pacro@a YIKIO Hycce:IbTa Ii lCU3@$YI~MeHTbI JIOBePXHOCTJWfO ‘T~JCHIIR 

~BeJIIiYIIBaJOTCfJ C ~V~HbIII~HIlC’vl p33MepOb CTePHFHFI. 


